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1. OBJECTIVE OF THE PROGRAM

This Report summarizes the two year research program focussed on the gradual
loss of the mechanical strength and, eventually, integrity of concrete structures

exposed to chemically aggressive substances commonly found in the environment.
This program is a continuation of the research program on the micro-mechanics of

concrete conducted previously by the principal investigator and his associates.
Both of these programs were sponsored by the Civil Engineering Program,
Directorate of Aerospace Sciences of the United States Air Force Office of

Scientific Research.
The objective of these studies was primarily aimed on the better under-

standing of the complex physico-chemical phenomena leading to the deterioration
of concrete reacting with the water-borne chemicals. The research described in
this Report is obviously of basic nature since it represents an inquiry into the

basic phenomena. Yet it also has undeniably practical implications as well. It
appears obvious that this type of research can later serve as a basis for the

improvements of the current design practices in order to enhance the economy and
reliability of concrete structures such as runway pavements.

The nature of this problem and its scope, spanning over several scientific

disciplines, requires parallel investigations of distinctly different, but inherently
coupled, processes. Some of this processes are seldom, if ever, considered
within the context of mechanics of concrete structures. In an effort to make this
Report self-sufficient and, consequently, more useful for the reader the analytical

modelling of chemical reactions and diffusion processes is in the sequel replicated

in a sufficient detail. A list of references containing an even more comprehensive
inquire into these processes was provided to help the interested reader feeling the

need for a better understanding of the phenomena.
In discussing a sequence of phenomena as complex as the one reported

herein it was often necessary to focus on a specific problem. A relative loss of
generality was more than compensated by the depth of the insight gained through
considerations of the selected case. The relative paucity of specific experimental

data mandated a not entirely supported selection of a most likely scenario

describing the process.



1 3

The general nature of the proposed model is micromechanical. The ultimate
benefit arising from such an approach is that it enables establishment of rational
relationships between the chemical composition of the hardened cement paste,
morphology of the pore system, and defect distribution on one hand and the

macroscopic (phenomenological) attributes of the specimens such as strength and
durability on the other hand.

The considered problem of chemo-micro-mechanics of concrete is, obviou-
sly, too wide to be addressed in a comprehensive manner within a two year
research program. Even though most of the considerations to be discussed in the
sequel are of general validity (or will, at the very least, become a part of a more
general analytical model) the studies summarized in this Report are focussed on:

- a specific doible-decomposition chemical process leading to the formation
of ettringite resulting from the exposure of the hardened mortar to water-
borne magnesium sulphates,
- isothermal processes in order to reduce the number of thermodynamic var-
iables and thermal diffusion,

- small to moderate pore pressures in order to be able to neglect the barro-
diffusion and the influence of the pore pressure on the stress-strain relation-
ship in the solid skeleton of the hardened cement paste, and
- the pre-critical processes with regard to the diffusion and mechanical res-
ponse.

A generalization of these studies to the critical and post-critical phenomena,
pressure driven flow through a porous media, and many other interesting

phenomena is expected to become a part of subsequent studies.

2. INTRODUCTION

The general objective of this report is to relate the chemical composition of the
concrete and the morphology of its microstructure to its chemo-mechanical
response when exposed to chemically aggressive ambients. It is in this sense that I1

the label chemo-micro-mechanics seems both descriptive and justified.
Naturally, this work is by no means the first one with such a lofty

objective. For example, the chemically assisted fracture was studied by Rice
(1978), Charles (1978), Cherepanov (i974), Fuller and Thomson (1979), Codes

.. .'Lud/or
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Thomson (1980), and many others on different levels of sophistication. A rather

general discussion of degradation and chemomechanics was published by Aifantis

(1980, 1981) who should also be credited with an initial continuum study of

embrittlement (Colios and Aifantis, 1982). Many other papers with similar
objective can be located in the existing literature. It is, nevertheless, felt that this
Report is not only different from the similar efforts but that it also establishes a

comprehensive framework for studies of an entire class of problems. Finally, this
work has a practical aspect as well since it aspires to become ultimately a basis

for a powerful tool in design of concrete structures.

Concrete is a complex composite material containing several active
ingredients capable of reacting with the aggressive chemicals commonly found in

the environment. These reactions are often deleterious for the integrity of
concrete causing distress of structures and necessitating costly repairs and even

costlier replacements.
As pointed out by Moavenzadeh (1971) the failure of a structure is not in

itself a physical phenomenon but a condition or state of a complex process

characterized by reduced reliability and inability of the structure to perform its

functions. Consequently, in order to be able to predict the failure it is necessary

to analyze the processes leading to the distress and establish criteria needed to
distinguish the conditions portending the onset of failure. Thus, the analytical

model must describe the evolution of ,ariables representing physically
identifiable measures of state and formulate conditions defining the limiting
response of the material. For example, brittle failure of concrete occurs either as

a result of a runaway growth of a single crack of preferential geometry or due to
coalescence (cooperative action) of microcracks into a macrocrack. Hence,

appropriate internal variables (Krajcinovic 1989) must be introduced into the
analytical model to describe the manner in which the microcracks affect the

mechanical response of the solid (compliance, diffusivity, etc.). For low to
moderate crack densities a single internal variable (volume average) suffices.
However, at the localization threshold the direct interaction becomes a dominant

attribute and an appropriate internal length variable must be introduced in order to

be able to predict the critical phenomena. At the threshold of the critical regime

(distress) the evolution of the variable describing the state of damage (local loss
of integrity) is rapidly accelerated. From the physical standpoint the process

becomes non-local. Matnematically, the problem Decomes strongly nonlinear and
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in the case of the localization the governing differential equations cease to be

elliptical causing further difficulties in analyses.

Analytical modeling of the environmental degradation of the hardened
cement paste involves considerations of a complex, and not totally understood,

physico-chemical process interrelating diffusion, adsorption, a double
decomposition chemical reaction and evolution of damage (micro and macro-
cracking). Th- complexity of these processes can be overwhelming since they in
an essential manner depend on the chemical composition and microstructure of
concrete. It is, therefore, not surprising that a reasonably comprehensive, and

convincing, analytical modelling of this phenomenon is not as yet available.
Moreover, the experimental evidence is often sketchy and directed towards
conventional phenomenological modelling being of limited utility in
micromechanical studies.

Among many interesting physico-chemical processes this paper focuses on

the external sulphate attack on concrete. Contained in a wide range of industrial
and agricultural effluents the magnesium sulphate proves to be a potent cause of

degradation of a wide range of concrete structures such as pavements, culverts,

bridges, hydraulic structures, etc. The internal sulphate attack (attributable to

sulphates within the aggregates, see Ouyang, et al. 1988) will not be considered
within this Report. Naturally, a reasonably straightforward modification of the

* proposed model should suffice to enable analyses of the internal attack as well.
The degradation of concrete as a result of exposure has been recognized by

the ACI Committee 201 which in its "Guide to Durable Concrete" - ACI 201.2R-

77 reflects on this problem in a rather cursory manner. In particular, the

Committee suggests that in structures exposed to sulphate attack (seawater and

groundwaters in western and norther U.S.) only the type V cement (less than 5%
of C3 A or 20% of C4 AF + 2C3A) be used. It also recommends classification of

I exposure into four classes with respect to the sulphate concentration. The
Committee further recommends lower w/c ratios of 0.45 and advises against use

I of calcium chlorides (reducing sulphate resistance)

The sulphates can damage concrete also by a purely physical action by

crystallization in the pores of concrete. The growing crystals (not reacting with

the cement) can exert sufficient pressures to cause spalling of the outer layers of
concrete (Reading 1975). Naturally, even the sulphate-resistant Type V cernentz

are not impervious to this type of attack.
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The objective of this study is to formulate a micro-mechanical theory

modeling the dominant aspects of the underlying processes, blurring
simultaneously the unnecessary details. The most important aspect of this study

consists in providing a rational explanation of the experimentally measured

trends. Specifically, the primary concern centers on providing a rational

analytical model relating chemical composition of concrete and its morphology3with the mechanical response. For example, it has been clearly established that

the volumetric expansion of concrete depends not only on the concentration of
sulphates and the time of exposure, but also on the composition of concrete and

in particular on the mass fraction of the tricalcium aluminate. Even though the
basic problem is very complex whenever possible and advisable an effort will be

I made to achieve the objective and retain the simplicity and tractability without

compromising the rigor and physical insight into the underlying phenomena.

3. ANALYTICAL MODEL

Consider a hardened cement paste specimen saturated with clean, chemically
inert, water, which is at time t = 0 immersed into a pool of water containing a
known, and constant, concentration of magnesium sulphate MgSO4. The solute

diffuses into the hardened cement paste specimen, triggers a sequence of complex
chemical reactions and forms an expansive reaction product (ettringite). The

attendant local stress concentrations in the material surrounding the inclusion in
which the reaction took place, are often sufficient to cause microcracking of the

hardened cement paste. The basic thermodynamic variables needed for the
description of the process during which the mechanical strength of the concrete
exposed to the magnesium sulphates (or some similar aggressive chemical

substances) degrades, are:

- solute concentration c(xj) of the magnesium sulphate in the diffusing

water,
- concentration of the adsorbent (gypsum) cg(x,t) on the adsorbate (wall of

the pores of hardened cement paste),
- concentration of the reaction product (ettringite) ce(x,t) formed during the

double dezcmposition reaction,

- elastic strain e(x,t) in the specimen, and
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- mechanical history iecording parameter (microcrack density) o(x,t).

The rates of change of these thermodynamic variables are related through

the kinetic equations such as those governing the rate of chemical reactions,

diffusion equation, adsorption isotherms and damage evolution laws. The

coefficients in these equations must be determined through careful experiments in

conjunction with micromechanical considerations neither of which are, according

to the consulted literature, commonly available.

Finally, it is necessary to determine the thermodynamic state of the mate-

rial as defined by the two state parameters: diffusivity and mechanical

compliance. In both cases the consideration was at this point restricted to the pre-

critical regime. Nevertheless, the derivation of micromechanically rigorous

expressions for the diffusivity and compliance tensors requires consideration of

the internal damage, i.e. presence of a large number of microcracks distributed

over a large part of the affected volume. In a subsequent research program, to be

proposed shortly, these investigations will be extended to the post-critical

regimes considering the propagation of the percolation and fragmentation fronts

through the hardened cement paste and the behavior of material swept by these

two fronts.

The processes of diffusion, adsorption, chemical reaction and micro-

cracking are inherently coupled. For example, the extent of the chemical reaction

obviously depends on the transport of magnesium sulphates through the hardened

cement paste (diffusion or flow through the porous media). The rate of transport

of aggressive chemical substances is enhanced by microcracking which opens
new, wider and more direct paths for the percolating fluid. However, the

microcrack nucleation and evolution is directly attributable to the formation of

ettringite crystals which are in turn the products of the chemical reactions.
Many other coupling effects such as influence of the macro-stress sign

(compression or tension) on the crack width and, therefore, diffusivity, influ-

ence of the pore pressure on the stress-strain relationship, thermal effects

associated with the exothermic reactions, etc. will at this point be considered as
being of secondary importance and, consequently, ignored.

In summary, the analytical model will consist of several partial and

ordinary differential equations defining the salient aspects of the problem such as

the rate of chemical reactions, diffusion with adsorption and the mechanical

equilibrium. These equations will be formulated in this Report sequentially and
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almost independent of each other. The Report will also contain a description of

simplifications introduced to enhance the tractability and brief discussions of

trends in futt.r:- development of the proposed model. Naturally, the accuracy and

predictive ability of the model will be tested against the available experimental

data. The main emphasis of this comparison will be in relating the macro-

response of the mortar specimen to its micro-structure and chemical composition.3 The flow chart shown in Fig. 1 represents the general structure of the

model to be developed in detail in the subsequent sections of this study.I

constrie
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Fig. 1. Schematic structure of the proposed model for the sulphate corrosion

3 induced degradation of concrete
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U
3 4. CHEMICAL REACTION

3 A review of the existing literature reveals a reasonable concensus with regard to
the main points of the so-called double decomposition reaction leading to the
formation of ettringite during the exposure of the hardened cement paste to the
water borne sulphates. However, the exact details of these reactions are still a
matter of debate and disagreement. In this paper the so-called Hansen's model

(1968) will be taken as the starting point. The proposed model can readily
accommodate other decomposition reactions which can be found in the literature,

I without changes in its basic structure.

Recently reported experiments (Odler and Gassser 1988, Moukwa 1990)U confirm the essential nature of the micromechanical changes associated with
MgSO4 attack on the cement paste. Careful measurements indicate a substantial
reduction of the total porosity (10% - 20%, Moukwa 1990) resulting from the

expansion products filling the pores. The expansion develops rather slowly since
the pore space suffices to accommodate the ettringite crystals initially. After

protracted exposure (in excess of half a year) the internal fracture (damage)
becomes apparent since the remaining pore space is insufficient to provide enough

I room for the expanding needle-like ettringite crystals. According to Moukwa
(1990) the "examination of fractured surfaces in the scanning electron microscope3 indicated that the formation of such reaction products probably was the main

cause of deterioration."

According to Hansen (1968) the double decomposition reaction taking place

in the hardened cement paste inundated by a solution of magnesium sulphate can
be summarized by the following equations

Ca(OH)2 + MgSO4 + 2H 20 -4 CaSO4 .2H 20 + Mg(OH) 2  (4.1)

m: 74.0 + 120.4 + 36 -- 172.1 + 58.3

v 33.2 + 72.1 + 36 --4 74.1 + 24.5

3 and

3CaO.AI20 3 + 3(CaSO 4 .2H 20) + 26H20 - 3CaO.AI203.3CaSO 4.32H 20 (4.2)
I 270.2 + 3(172.1) + 26(18) - 1254.5

v 88.8 + 3(74.1) + 26(18) -- 725.1

I



110

I
where the molar masses m (g/mol) and molar volumes v (cm 3) are listed below

each chemical substance taking part ir" the reaction (see also Appendix A).

The first of the two reactions (4. 1) is a through-solution reaction. The
reaction products (gypsum and magnesium hydroxide) are readily accommodated

by the porosity of the mortar. Simple computations clearly indicate "that concrete
cannot be caused to expand and crack by the simple mechanism of filling pores
with solids by a through-solution process" (Hansen 1968,page 32).

The second reaction (4.2), involving tricalcium aluminate, newly formed
gypsum and water needed to form the ettringite, is often assumed to be of the

solid-liquid or topochemical kind. In this case, "the space available locally at the

surface is not big enough to accommodate the newly formed crystal" (Soroka,

1979, page 153). The expansion of the newly formed ettringite crystal may,
therefore, cause large local tensile stresses sufficient to induce cracking of the
hardened cement paste in the vicinity of the pores.

The Hansen's model (4.1 - 2) is not the only one to be found in the litera-
ture. Mather (1968) proposes two alternatives: a single decomposition and a

double decomposition (somewhat similar to Hansen's) reaction. Biczok (1972)
proposes a change in the reaction (4.2) and recognizes two alternatives of that

reaction for pH below or above 12.5. Mindess (1981) also agrees with the first of
the two reactions but allows for transformation of the ettringite to monosulphate
in the case when all sulphates are consumed before the tricalcium-aluminates are

completely hydrated. According to Lea (1970) and Soroka (1979) the second of
the two reactions involves C4 AH 19 .

Naturally, it is very difficult to determine which one of these reactions is

typical of the considered case. Moreover, on the technical scale the ASTM C1012

Standard recommends the aqueous magnesium sulphate (MgSO 4 .7H20) to be used
in the ex'ansion tests (instead of MgSO4) The listed ASTM Code also specifies

the range of the pH factor between six and eight.

4.1. Stoichiometric analysis

The masses of the formed gypsum and ettringite and the masses of the
substances "consumed" in the course of the chemical reactions (4. 1) and (4.2) can
be determined using conventional stoichiometric analyses.

Denote by:
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I
c(x,t) -- concentration of magnesium sulphate in the water
0 - accessible porosity of the hardened cement paste

m - molar mass (g/mol)

M - total mass of a substance in volume V = 1 m 3 .

v -- molar volume (cm 3 ).

r -- mass, densities

I and use the following subscripts:

j s for magnesium sulphate

cm for cement

c for calcium hydroxide

a for tricalcium aluminate

g for gypsum

e for ettringite.

Superscripts c and f stand for masses consumed and formed in the
course of a given chemical reaction.The relevant data for the molar masses and
volumes of all substances involved in reactions (4.1) and (4.2) are assembled and

tabulated in the Appendix A to this Report.

Consider now the chemical reaction (4. 1). The mass of the gypsum formed
j during this reaction may be controlled either by the supply of sulphates (if the

ratio Ms/Mc < ms/mc = 1.63) or by the available mass of calcium hydroxide (if
Ms/M> 1.63). Rather elementary stoichiometric analyses suffice to determine the

mass of the newly formed gypsum

I 9Mf = min [(mg / ms)o cysolV , (mg / mc) fc Mcm 1 (4.3)

while the mass of the calcium hydroxide consumed in the course of the reaction

(4.1) is

MCc = min [(mc / ms)¢ 0cysol V , fc Mcm ] (4.4)

I In the two above equations fc denotes the mass fraction of calcium hydroxide

with respect to the mass of cement, Ms = c 0p ,soi V is the mass of sulphates with

Ysoi denoting the density of magnesium sulphate solution. The mass fraction of the

I
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calcium hydroxide f, k: an be readily determined by a similar stoichiometric
analysis o- the hydration reaction of the C3S and C2 S . Since the experiments

indicate no dependence of the volumetric expansion on the available mass of the
calcium hydroxide this alterne,. ,e can be, at the moment, safely discar.:d.

The mass of the consumed tricalcium aluminate during the second (topo-

chemical) reaction (4.2) can be then determined to be

M = m', [(ma ]3mg) Mfg ; fa Mcr,] (4.5)

1 depending again on whether the reaction is controlled by the supply of gypsum
(Mg /Ma< 1.91) formed during the preceding through-solution reaction, or the

available mass of the tricalcium aluminate (when the inequality sign is reversed).
In (4.5) fa denotes the mass fraction of tricalcium aluminate calculated with3 respect to the mass of cement.

In conjunction with (4.3) the expression (4.5) can be rewritten in the form

M, = min [(ma /3ms)o c ysaV ; (ma /3mc)fc Mcm ; fa Mcm] (4.5),

I Finally, the mass of the ettringite formed in the course of the topochemical re-

action (4.2) isI
Mfe = (me / ma) Mc = min [(me / 3ms)o crsoV ; (me / 3mc)fc Mm ; (me / ma)fa Mc. I

3 (4.6)

Consequently, the mass of the ettringite formed is controlled by: (a) the mass of
the available sulphates, (b) available calcium hydroxide or (c) by the tricalcium
aluminate contained within the hardened cement paste. While theoretically
rigorous, these expressions contain several uncertainties which may affect their
accuracy. For example, the accessible porosity cannot be easily derived. Water3 can be stored in concrete in large bubbles, porez of different radii (ranging from
130 to 500 nm, see Bazant, et al. 1988), and intragel space.The accessibility of
these passages depend on the complex morphology and connectivity of the pore

space and can vary within rather wide limits from case to case. S~..condly, some
ettringite is already present (and some tricalcium aluminatr already consumed) in
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the cement paste during hardening as a result of the addition of gypsum needed to
avoid rapid setting.

Knowing the masses "formed" and "consumed" during the reactions (4. 1)
and (4.2), and the densities of these substances, it is rather straightforward to

determine the free volumetric strain attributable to the double decomposition
reaction. The computations indicate that the mass of the ettringite formed will

almost never depend on the calcium hydroxide available in the cement paste.
Neglecting that possibility, the volumetric expansion computed from the
stoichiometric (mass balance) analyses can be written as

ev = AV / V = (Mfe/Ye) - [(Mc / 7c) + (Mc / Ya)] (4.7)

From the expressions derived above the free volumetric expansion of the

I reaction products can be written in a simple form as

ev = 3fpCe for Ce<C s or ev = 30, cs = const for Ce > cs (4.8)

where f3B denotes the coefficient of linear expansion of the ettringite crystal.
The first of the two expressions (4.8) corresponds typically to the begin-

ning of the process during which the reaction depends on the available sulphates.

At some point defined by

Ce = Cs = (fa me Mcm) / (0 YsoIV m.) (4.9)

I the entire supply of the tricalcium aluminate available in the hardened cement

paste is exhausted and the reaction is terminated.

(49 The coefficient fl3 is obtained comparing (4.7) and (4.8) in conjuction with
(4.9)

I (M[ Ye) - [(MC Yc + (Mc/ Ya)]

3fameMcn / @sol V ma (4.10)

However, the already discussed uncertainties will affect the accuracy of these
calculations.
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The expression (4.10) can be further recast into a more convenient form for

computations using (4.8)2 and (4.9)

ev(ce= Cs) . P0sol ( me 3mc ma)
3c s  3mer e Yc a (4.10)

Even though the rigorous determination of the exact value of the coefficient

of linear expansion IPi (see also, Sih, et al. 1986) might not fall within the realm

of realistic expectations in the case of a material with a random morphology of
microstructure, the fact remains that the performed stoichiometric analysis clearly

indicates the major experimentally determined trends in the deformation process.

In other words, the expressions (4.8) reflect the fact that the extent of expansion

is in the short term controlled by the concentration of the diffusing sulphates. In

the long term (i.e. protracted exposure) the volumetric expansion depends only on

the chemical composition of the cement (i.e. the mass fraction of the tricalcium

aluminate present in the hardened cement paste). The limit between the short and

long term exposure is defined by the expression (4.8) in conjunction with the

diffusion equation (defining the time dependence of the solute at a particular

location).

I
4.2. Kinetics of ettringite formation

Even a superficial perusal of the extensive literature concerning the

formation of ettringite reveals a profound lack of consensus among the cement
chemists as to the actual type of the underlying chemical reaction (4.1-2).

Schwiete, et al. (1966), Hansen (1968), Soroka (1979) claim that ettringite is
formed by a solid-state (topochemical) mechanism at the surface of anhydrous

C3Acrystals. Chatterji (1968), and Mehta (1976, 1983) supported by scanning

electron microscopy observations of the ettringite morphology hypothesized that

ettringite is formed by a through-solution mechanism. Other authors (Biczok

1972, Ogawa and Roy 1982) Maintain that ettringite may be formed either by a

solid-state conversion or a through-solution reaction, or both. If both

mechanisms are present the topochemically formed ettringite is believed to cause

microcracking. During the crystallization of ettringite from the diffusing solution

I
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the crystals are likely to gradually fill (plug) the pores and initially even improve

the strength of the cement paste (Biczok 1972).

Naturally, the chemical reaction irrespective of type is not an instantaneous
process. In the considered case the situation is somewhat more complicated by the

fact that the basic reaction (4.1-2) is heterogeneous, i.e. involves reactants in
more than one phase. Before the substances can react they must migrate at least to

the solid-liquid interface. Therefore, in addition to the rate of chemical reaction,
certain physical factors affect the rate of mass transfer between phases, and the
overall rate of the heterogeneous reaction. According to Walas (1959) these

factors are:

- amount of the available interfacial surface to which the rate may be pro-
portional (surface-controlled mechanism)

- rate at which the liquid diffuses to and through the interface film

(diffusion-controlled mechanism)
- rate of the backward diffusion (important in reversible reactions only)

Consequently, a complete formulation of the rate equation for a heterogeneous

reaction should involve the rate equations governing both the mass transport and
the chemical reaction itself.

Several studies have addressed in the past the kinetics of ettringite
formation. A majority of these studies support the view that this process is

controllhd by the diffusion of the sulphate ions to the anhydrous C3A particles
(e.g. Tenoutasse 1968, Mori and Minegishi 1968, Plowman and Cabrera 1984,
Pommersheim and Chang 1986, 1988, Brown and LaCroix 1989).

Having in mind the already mentioned controversy, and in the same time
trying to keep the proposed model tractable, it seems reasonable to introduce the

following simplifications:
- diffusion equations for the sulphate ions contained both in MgSO4 and in

newly formed CaSO 4 .2H 2 0 will be cast into a single governing diffusion

equation. The diffusion will be considered as a time limiting step in the process

of ettringite formation,
- the through-solution reaction (4.1) is assumed to be instantaneous as

compared to (4.2), and its rate will not limit the overall rate,

- the reaction (4.2) (considered to be of the solid-state type) will affect the
overall rate but not as much as the diffusion process. The kinetic equation for
(4.2) will, nonetheless, be included in the governing equations of the model.
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In summary, it seems reasonable to consider the two processes

simultaneously as a diffusion equation with a sink (reflecting "loss" of sulphates

reacting with the active constituents of the cement paste). Moreover, there seems

to be no practical (or experimental) way to separate the diffusion of the sulphates

through the pores from the diffusion of gypsum through the cement paste in

search for C3 A. Thus, these two diffusion processes are simply joined into a

single one.

The diffusion will be considered in detail in Section 5 of this Report. The

remainder of this Section will be focused on the formulation of the rate equation

for the topochemical reaction (4.2).

In general the rate at which the molar concentrations change during a

chemical reaction of the type ( pA + qB -, IL ) is defined by an ordinary

differential equation of the form (Walas 1959, Dawson 1973, etc.)

dX = k(a-Px)(b-qx)P
at 1(4.11)

where: x denotes an increase in the molar concentration of the reaction product

L, t is time, a, b are the initial molar concentrations of the reactants A, B; the

exponents a and P3 are small integers or fractions. The reaction orders a and P3
are unity only in the case of simplest forward reactions. In the case of catalitic,

crosscatalitic, autocatalitic or reverse equations the order of the reaction changes.
The coefficients p/l and q1l are determined by the stoichiometry of the reaction.

In (4.11) k is the rate constant of the process (depending on the temperature and

pressure) defining the fractions of all collisions that are reactive. Obviously, the

dimension of this constant depends on the overall reaction order (a + /3). It

should be stressed here that there is no generally useful theory that predicts the

rate laws. The rate law must be found from suitably designed experiments (Kotz

and Purcell 1987, Mijovic and Ott 1989). According to the consulted literature

such data do not seem to be available for the considered double decomposition

reaction (4.1-2). Therefore, as the simplest alternative, it will be assumed that the
topochemical reaction (4.2) proceeds according to a second-order rate law:

dce = k(,- c ,) (4.12)

I d

I
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where Ce is the actual molar concentration of ettringite, co, co are the initial
molar concentrations of gypsum and tricalcium aluminate. The equation (4.12)
simply states that the rate of ettringite formation is linearly proportional to the

available concentrations of gypsum and tricalcium aluminate.

The rate equation (4.12) will be somewhat modified in the Chapter 7 where
molar concentrations of the substances will be replaced by their mass percentages

with respect to some reference mass M. The reason behind this conversion is the

solid-liquid character of the reaction (4.2). In this case the conventional reference
volume (1L of solution) seems to be inappropriate. Conceptually, once the data

concerning the order of the rate laws for (4.1-2) become available the proposed
model can be readily adjusted.

Chemical equilibrium ("attractor" state) is reached when either all of the
tricalcium aluminate is exhausted or when all of the adsorbed gypsum is spent.
The latter case will typically occur only if the diffusion process is terminated

through the interruption in the supply of the magnesium sulphate. In both cases
the termination of the reaction signals the end of the expansion and,
consequently, the cessation of the deformation process (Mather 1968).

It is important to point out that the formation of an ettringite crystal per se
implies that it exerts large pressures on the the surrounding matrix. As argued by
Hansen (1968) only some of the crystals growing in places restricting their free

expansion (via constrictions in the pore size) will exert pressures on the hardened
cement paste sufficient in magnitude to nucleate and subsequently propagate a

crack.

5. DIFFUSION WITH ADSORPTION

5.1. Diffusion Equation

As already mentioned the extent of the considered chemical reaction strongly

depends on the availability of the magnesium sulphates.The magnesium sulphate
is brought into contact with the cement paste in form of a solute contained in the
water penetrating through the pores of the hardened cement paste. In general, the

conduction of water may be ascribed to many causes. However, the pressure and
concentration gradients are generally considered to be the two most frequent
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I
generalized forces driving the water through the solid. In this Report it will be

assumed that the water is driven through the pores of the hardened cement paste

by the gradient of the concentration s(x, t) = grad c(x, t) of the solute in the water.

Even though the derivation of the diffusion-adsorption equation is available

Iin the literature a short precis of the underlying theory seems to be in order for

the sake of completeness of this Report. Consider a problem of a concrete slab

saturated with inert water. At time t= 0 at least one of the external surfaces of

the slab is exposed to water with some concentration c of a chemically aggressive

Isolute. In the case when the pressure gradients are small it can be assumed that

the mixing (process of gradual homogenization of two fluids) occurs via

diffusion, i.e. by the molecular mass transport of solute from the external fluid to

one contained within the accessible pores of the slab. Naturally, this process is

irreversible and, consequently, energy must be dissipated during the diffusive

mass transport.

The conservation of mass equation, in conjunction with the equation of

continuity, leads to the well known partial differential equation governing the

process of diffusion

p ( Dci + vVc) = -div i + &~, t)() (5.1)

In (5. 1) c (x,t) is the concentration of the solute, v (x,t) the velocity of

convective flow, p the fluid density and q(c,t) the source term reflecting the

change in the concentration attributable to the adsorption of solute on the

adsorbant (hardened cement paste). The thermodynamic current (flux) density

i(c,t) represents the mass of solute diffusing through the unit surface during a

unit of time.
The internal (Gibbs') energy density (Glansdorf and Prigogine 1971) is

given by

de = Tds + pdV - 4i dni (5.2)I £

where T, s, p and V are the absolute temperature, entropy, pressure and

volume, respectively. Additionally, Ui and ni are the chemical potential and

In
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I
the number of particles (moles) of the i-th substance within volume V. From the
conservation of mass

I nimi = 1 (5.3)

where mi is the mass of the i-th particle. Thus,I
_i dni = 0 (5.4)

Expressing, furthermore, the concentration in terms of the total mass of particles

U c = nim1  (5.5)

I the expression (5.2) for the internal energy density can be rewritten in form

de = Tds + pdV - pdc (5.6)

where (in the case of mixing of only two substances)

.mI M2 (5.7)

is the generalized chemical potential.
The generalized chemical potential /4 is the function of the concentration c,

temperature T and pressure p . Thus, its gradient can always be written as

VA= ( rvP + )f VT + IC, (5.8)

where the subscripts to the right of the parentheses denote variables held fixed.

Assuming further the process to be thermodynamically stable and the field
gradients small, the current density i is (Landau and Lifshitz 1988) a linear

function of the gradients of the chemical potential and temperature

i = -a V4-J VT (5.9)
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where a and 13 are some corstants.3 Substitution of (5.7) into (5.8) leads after some obvious manipulations to

i= -pDI = -pD(Vc + kT VT + LkVp) (5.10)I ~T -p (.0

where I is the field intensity and

D a'APT PDkT LA - + p 'kp aVP DC X T , a- kp =  C, pT (5.11)

I the diffusivity parameters.

In a general case of viscous fluids the situation is much more complex and
Srequires careful modifications of above expressions in the spirit of the diffusion

model suggested by Aifantis (1980). Restricting present discussion to non-

viscous fluids the governing equation can be obtained substituting (5.10) into

(5.1)

Spa- + vVc)= div[ pD(Vc +-T VT + -Vp] + q(c,T)
T P (5.12)

In the present case the temperature T is considered to be a known function

of time and space. Generally, this might not be the case and an additional partial

differential equation defining time rate of change of entropy as a function of
thermal flux (depending on T and /1 ) must be added (Landau and Lifshitz
1988) to allow for a simultaneous determination of T and c. At this point,

however, T will be regarded as being known. Additional simplifications will be3 introduced since in its most general form equation (5.1) does not lend itself well

to analyses of the type considered appropriate for the initial phase of this research

project.

On the basis of experimental observations it seems appropriate to assume

that the process is slow and that the mass transport by conduction (i.e. diffusion)

vastly exceeds that by convection. In other words, it will be assumed that the
second term on the left hand side of (5. 12) can be neglected.

Furthermore, the solution concentration c (x, t) is, in the considered case,

of the order of several percent. Noting that the coefficients of thermal and



21

barrodiffusion kT and kp must vanish when c approaches zero (since no
diffusion takes place at vanishing concentration) the second and third term within
the brackets on the right hand side of (5. 12) can be neglected as well.

The source term is typically represented in terms of the time rate of change

of the amount of adsorbate on the adsorbent (hardened cement paste) per unit
volume. At a given temperature and pressure a definite relation is found to exist3 between the number of molecules adsorbed and the concentration of the solute.
This relation, defined by isotherms, is measured experimentally for each specific
process under controlled conditions. When only few sites on the surface of the

pore are occupied the so-called Henry's law (Compton 1989) applies and the loss
of the sulphate concentration attributable to adsorption is

cA = ki c (5.13)

where k, (kinetic rate constant of the process) is a parameter of the system. In
some applications similar to the presently considered one (Banks and Jerasate
1964) this linear law was shown to be quite useful. In other cases the linear law
(5. 13) leads to a less than satisfactory fit of the experimental data necessitating

application of more complex and nonlinear isotherms (Langmuir, Freundlich,
etc.). In view of an almost total lack of experimental data it seems advisable to
use the simplest expression (5.13) available. Naturally, the expression (5.13)
neglects the hysteresis in the adsorption-desorption cycle which is, strictly
speaking, appropriate only when the pores are perfect cylin-ders and in absence
of the residual liquid films covering the pore walls.

On the basis of (5.13) the source term can then be written as

q(c,T, p) = -(1) (3c ac (5.14)

With all mentioned simplifications the final form of the diffusion equation

(5. 12) reads

TT (5.15)

where
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D e = D[1 + (k1 /)] -1  (5.16)

is the effective diffusivity accounting for the adsorption in the sense of
approximations (5.13) and (5.14). In general, the diffusivity is neither isotropic

nor homogeneous. These two points will, however, be discussed in the sequel.

In the case of constant diffusivity and infinite half-space the Fickian diffu-

sion equation (5.14) admits a closed form solution in the form of error functions

(Carslaw and Jaeger 1959, Greenkorn 1983, Landau and Lifshitz 1988, etc.). For

a finite slab the solution can be derived in form of a rapidly converging infinite

trigonometric series (Carslaw and Jaeger 1959). In the case of arbitrary geometry

and/or variable diffusivity the solution can be reached only through application of

approximate (such as various types of the method of weighted residuals, see for

example, Finlayson 1972) or purely numerical methods. Since the diffusivity in
the considered case involves adsorption and microcracking, neither of which is

homogeneous, a closed form analytical solution seems to be out of reach.

5.2 Diffusivity

The diffusivity D is a structural parameter with a strong dependence on the

tortuosity of the fluid path through the solid (Dullien 1979). In a virgin hardened

cement paste the diffusivity depends on the pore structure, i.e. the distribution

(and connectivity) of pores 0(r) of various widths. Assuming the pores to be

perfectly random with respect to their orientation and width the virgin

(undamaged) hardened cement paste may be considered to be of isotropic

diffusivity. For the present purposes it will be assumed that the accessible

porosity 0 and isotropic diffusivity DO characterizing diffusion in the virgin

hardened cement paste are known.

As the microcracks within the specimen nucleate and grow the tortuosity of
the fluid path decreases and the diffusivity increases. This problem was discussed

by many authors in the past on many levels of rigor and sophistication

(Barenblatt, et al. 1960, Salganik 1974, Dienes 1982, Englman, et al. 1983,
Wilke, et al. 1985, Bazant, et al. 1987, Babushkin, et al. 1987, Gueguen and

Dienes 1989, etc.).
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The purely continuum models, popular among analysts because of their

computational efficiency, ignore the microscopic nature of the mixing process. In

general, these models are based on the volume averages of the involved field

quantities and variables and are, therefore, applicable in the initial stages of the

process away from the critical phenomena (such as percolation threshold). Even

in these stages of the process, i.e. when the microcrack density within the solid

is of moderate levels, it is often argued that the nature of the problem necessitates

application of statistical models (see Torelli and Scheidegger, 1972, etc.) based

on the studies of a random network of capillaries. This is especially important

when the distribution of the capillary sizes is not isotropic.

Even newer studies of the so-called percolation problems fully support the

stochastic character of the problem. Moreover, these studies (see, for example,

Stauffer 1985) indicate existence of the scale effect (which is of great interest in

* the process of interpreting the experimental results) and a radical change in flow

patterns and diffusivity in the neighborhood of the critical regime (percolation

threshold). These studies may, therefore, become pertinent during investigations

of the localized phenomena characterized by the emergence of large cracks. This

work will, hopefully, be completed in the proposed continuation of this research

program.
The strategy adopted by Salganik (1974), developed within the framework

of the effective continua theories, appears to be most promising and suitable for
the present purposes. Consider a volume V of an isotropic matrix of diffusivity
DO containing an isotropic inclusion of diffusivity D*. The effective flow density

through the volume is then given by a vector equation

I m = (1-. + fj* (5.17)

I where f = V*/V is the volume fraction of the inclusion. The superscripts (0)
and (*) refer to the matrix and the inclusion. The flow densities (currents) are

im D. Im = = DL sn (5.18)

where Sm = (ac/Xm) is the driving force (concentration gradient).
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Introducing the mapping tensor Amn it is possible to write the concentrati-

on gradient within the inclusion as a function of the effective concentration

gradient in form

N jSfv -=VASm

f ,*dV =V I A,,s
V 1(5.19)

where V1 is the inclusion volume.

In the present case the interest is centered on the determination of the ave-

rage diffusivity of the hardened cement paste containing many spheroidal in-

clusions. Moreover, this average diffusivity is related to some effective macro

continuum which in a smoothed manner relates to the actual inhomogeneous
microstructure. In order to accomplish the transition between the effective macro-

continuum and the inhomogeneous actual solid containing a large number of

inclusions of different sizes, shapes and orientations it becomes necessary to

introduce the concept of a representative volume element. A representative volume

element must be large enough to contain a statistically valid sample of
inhomogeneities. Selected in such a manner it enables transiti-on between the two

scales mapping the actual solid on a material point of the effective continuum.

For a dilute concentration of spheroidal inclusions the expression (5.19)

remains valid with a proviso that the integral on the left hand side of (5.19) is
taken over all inclusions contained within the representative volume element of

volume V circumscribed about the material point in which the diffusivity is

sought. Since the number of inclusions within the representative volume is by

definition large the sums can be recast into integrals taken over all sizes and

orientations of these inclusions.

Substituting (5.18) and (5.19) into (5.17) it becomes possible to derive the

expression for the effective diffusivity in form

Dm = D ° + (Dmk - Domk) Akn B(Y) dY

U (5.20)

Expression (5.20) is subject to the normalizing condition
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3 B(Y)dY=N (5.21)

I In (5.21) N is the number of inclusions contained within the volume V. The

function B(Y) contains the probability density distributions of incltsion sizes

I and orientations within the solid element dY.
The form of the expression (5.20) for the diffusiv'ty implies introduction

of the assumptions common to the so-called self-consistent methods (Mara 1982,
Kunin 1983, Krajcinovic and Sumarac 1987, etc.). This type of methods is based
on the premise that the direct interaction between inclusions (and/or cracks) is

negligible and that the external fields of every inclusion do not significantly

differ from the respective far-fields. Consequently, the vald,,; of the expression

(5.20) is, strictly speaking, limited to the low-to-modest inclusion concentration.
It is notable, that the concentration gradient s within the inclusion is3 homogeneous in the case of homogeneous fo- field fluxes (Landau, et al. 1988).

Assuming that both the matrix and the inclusion are isotropic

DO = D a=mn (5.22)

I the relation between the concentration gradients in the exterior and the interior of

the inclusion depends only on the shape of the inclusion and can be written in the

form (Shchelchkova 1974, Salganik 1974, Landau, et al. 1988)

D O s = D°si7 + nik(D* - DO)sk* (5.23)

In (5.23) nik is the depolarization tensor (being an analogue to the Eshelby
tensor in solid mechanics). The components of the depolarization teaisor can be,
in a general case, determined only after quadratures of complicated integrals.

* Anticipating application to crack-like defect it suffices to consider inclusions in

the form of oblate spheroids, i.e. when lengths of the three -rincipal axes of the3 spheroidal inclusion are

al=a 2 =a and a3 =b =fla (5.24)
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In this case the principal values of the depolarization tensor (see Landau and3 Lifshitz 1988) can be derived in form of simple expressions

n(z) l+e 2 (e-tan-le) n(x = = m =1-(1-n(z)) (5.25)

* where

e = [( )2  -11/2 (5.26)

3 Therefore, the depolarization tensor can be written in form

nik = m 8ik + (I- 3 m) 8i3 (k3 (5.27)

The expression (5.23) .,eneralized for all three axes is then

([1- (-17)M]ik -(1-7 )(1-3m)&i3&k3}sk' = Si'  (5.28)U
or

I (A -1 "' . s
Ask Sk = Si (5.29)

I where the second rank tensor A is the inverse of the bracketed term on the left

hand side of (5.28). The primes denote reference to the local (principal)3 cocrdinate system of the inclusion.

Thus,

s k = Aik si (5.30)

The expression (5.30) is written in terms of the local (inclusion) coordinate
system and must, therefore, be transformed to the global (specimen) coordi-nate

system. The general transformation rule for a second order tensor is

A3n = Aik gmi gnk (5.31)
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I
where the coefficients of the rotation tensor g written below in the matrix form

I are functions of the Euler angles (p and 0

-sino -cosO cos4 sinO cos4

[g] = cosO -cosO sino  sin 1sino  (5.32)

0 sine cos9

From the expressions (5.31) and (5.32), in conjunction with (5.28), after

some relatively simple but cumbersome operations it follows that the tensor A
acquires a relatively simple form of

N Am= A mn + Bnnnn (5.33)

I where the following identities were utilized

nm = g,m3 and gmi gni = S3mn (5.34)

The constants A and B in (5.33) are

A 77(-1 )B = 7]
4 +(7 -M4 7/- 2(77 -1)m Il+ (1 -1)~m (5.35)

In deriving (5.35) the inclusion volume was taken as

v 3= ,ra l b-= ra3/3 (5.36)

with fP=L being the aspect ratio of the lengths of the spheroid axes.I a
For a low to modest concentration of ellipsoidal inclusions (such that the3 interaction of their external fields has a negligible effect on the average current)

the contributions of each inclusion can be merely superimposed. In this case from
(5.20), (5.22) and (5.33) follows a reasonably simple expression for the effective

diffusivity in form of

I
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.. E N
Dik = D O 45ik + Yf(r) (A(r) ik + B(r) ni nk

I (r) (5.37)

In the case of a large number of inclusions N the addition in (5.37) ceases

to be a viable alternative. Instead, it is necessary to rewrite the expression (5.37)

in form of an integral

Dik = Do[3ik + (ASik + Bnjnk )a3F sinedldeda db (5.38)

In (5.38) the integration domain includes the solid angle

Y(O<0< r/2 , 0< <2r) and the entire range of the inclusion sizes. In contrast

to (5.20) expression (5.38) implies that no correlation exists between the sizes,

aspect ratios and orientations of inclusions. This seems to be a reasonable

consequence of the inherent randomness of the hardened cement paste structure

on the microscale. Thus, the normalizing condition (5.21) becomes

F(0, Oa,b) sinOd dOda db = 4; N  (5.39)

1 In certain cases the sizes and orientations of the spheroids are not corre-

lated allowing for a reasonably simple evaluation of the integrals in (5.38) and

(5.39). It is important to notice that in the present case anisotropy stems only

from the orientation of the inclusions since both the inclusions and the matrix are

isotropic

The evaluation of the effective diffusivity (5.38) is even easier in the case

of crack-like defects for which the parameter /3 tends to zero, while 17=D*/DO

tends to infinit. Expanding the expressions (5.25) into Taylor series it follows

that the parameter e tends to 1//3. Thus, from (5.35)

SA = -B = I/#J for 1 >>/ >> I/17 (5.40)
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which significantly simplifies the computations.
In view of the fact that the inclusions occupy only a small part of the entire

volume and in conjunction with the fact that the local strain is related to the
average strain as the ratio of the total volume to the volumes of inclusions it
seems reasonable to assume that the local stresses in the vicinity of the expanding
inclusion are much larger that the average stresses. Consequently, it follows that

the microcrack distribution is perfectly random (with respect to orientations and
sizes). In the case of isotropic distribution of isotropic inclusions embedded in an
isotropic matrix the diffusivity must be isotropic as well. Thus, the function F

in (5.38-39) degenerates into a constant. In the considered case

F28Ara (5.41)

where the bar above the letter indicate average value. Thus, after relatively simple

but laborious manipulations the effective diffusivity can be derived from (5.38) in

a simple form of

D,, = Dm (5.42)

where

D = DO 1 + 2-o) (5.43)

with

o0= N a3
V (5.44)

being the Budiansky-O'Connell (1976) micromechanical damage variable.
For the sake of completeness it should be noted that a different model for

diffusivity was suggested by Whitaker (1967) who used the Taylor series
expansion of the product <v,c> about the vanishing convective velocity <v> =

0. The result turns out to be strikingly, if perhaps fortuitously, similar in form
since according to the Whitaker' s model

Dk = D0 ( 8j, + Bjk) (5.45)
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where the second rank tensor B represents the effect of the tortuosity (irre-

gularity of fluid paths and influence of the cracks, change in pore radii, etc.). An

even more complex model using a fourth rank tensor

SDij 
=  aij,,n v m Vn

IVl (5.46)

explicitly considers the microstructure of the continuum (through the tensor a)

and convective velocity v (Nieman 1969).

The proposed model defined by expressions (5.38-39) for a general

distribution of cracks, and (5.42-44) for an isotropic distribution of cracks, has a

substantial advantage in comparison to other models which are basically

phenomenological. Despite some uncertainties with regard to the determination of

the number of cracks N and their size, shape and orientation distribution this

model is firmly based on the micromechanics of the phenomena. Therefore, this

model will readily allow future generalizations and extensions in quest of more

rigorous and sophisticated analytical tools. For example, the model readily admits
considerations of tne influence of macrostresses and their sign (compressive
versus tensile) on diffusivity (Salganik 1974), etc..

The unavoidable conclusion of this discussion is that a rigorous,

deterministic derivation of the diffusivity is not a simple task. However, it is

undeniable that the influence of the cracks on the diffusion patterns is substantial.

For example, Bazant, et al. (1987) also suggest a formula according to which the

diffusivity is proportional to the crack opening displacements and crack density
which is in spirit identical to the expression (5.43). This formula was found to fit

the experimental results rather well. Consequently, it seems plausible to conclude
that the diffusivity is, indeed, proportional to the microcrack density, as

suggested by (5.43). However, the determination of the constant of

proportionality will at this point be made by fitting the experimental data.
It is finally important to note that the determination of the diffusivity of

undamaged concrete is a problem in itself since the diffusivity of the thin

transition zones (at the aggregate-cement matrix interface) strongly influences the3 flow patterns. In a virgin concrete these zones do not communicate. However, as

the cracks evolve and start propagating through the cement paste they establish

percolation paths which can disproportionally increase the macro-diffusivity.
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Thus, the effect of microcracking may, indeed, be even more pronounced than
expected. This is especially true in the vicinity of the percolation threshold.

6. STRESS-STRAIN RELATIONSHIP

I
Central to the investigations of the durability of concrete structures is the

* determination of the macro-stresses and macro-strains in the hardened cement
paste associated with the expansion of the reaction products and the attendant
microcrack nucleation and growth (damage evolution). On the micro-scale

chemical reaction (4.2) takes place in small parts of the volume in the
surrounding the pores with geometry conducive to the crystallization of ettringite.
In general, the crystals will not form in subcapillary pores (in which the surface
forces extend across the entire pore cross section, Hansen 1968). The expansion
pressures will not build up in the pores open to the exposed surface, either.
Consequently, the crystals capable of nucleating cracks will form only in a rather
small part of the total volume.

The present task consists in determining the compliance of the hardened
cement paste containing an ensemble of expanding crystals and an ensemble of
microcracks. At this point it will be assumed that all expanding crystals are
spherical in shape and that all cracks are penny-shaped. Consistent tc the
analyses in the preceding section, it will be again assumed that the defect
concentration is low to moderate rendering their direct interaction
inconsequential. It will also be assumed that the pore pressures have no

appreciable effect on the stress-strain relationship (see, for example, Biot 1973,
Rice and Cleary 1976, etc.).

6.1. Spherical inhomogeneities

Consider an isotropic spherical inhomogeneity (occupying domain D ) with elastic
properties defined by a symmetric fourth rank tensor C*. The free expansion
strain within the inhomogeneity, attributable to the difference between the
volumes of reactants and the reaction product (ettringite) is denoted by £r(x r: Q).
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I
The free expansion strain within the inhomogeneity is, naturally, equal to one

third of the volumetric expansion ev (defined by the expression (4.8)).The

enveloping matrix (hardened cement paste), occupying the domain (V-12), is

also isotropic, elastic and homogeneous (in its virgin, undamaged, state) with

material properties defined by the symmetric fourth rank tensor CO. Consistent

with the previously employed notation the superscripts (0) and (*) stand for the

reference to the matrix and the inhomogeneity, respectively.

According to the Eshelby's theorem the strains within an ellipsoidal inho-

mogeneity are homogeneous if the far-field stresses and strains are homogeneous

as well. Using this theorem and compensating for the disparity between the

elastic moduli tensors C* and CO of the inhomogeneity and the matrix by an

equivalent uniform eigenstrain E*(xe 12) within the inclusion it is relatively

straightforward to determine the basic relations between the stresses and strains

in the entire domain V. This approach has been comprehensively dealt with in the

seminal work by Mura (1982) rendering a recital of all details within this Report

superfluous. However, in order to make this Report self-contained and self-

sufficient the major points of the requisite analyses, specific to the problem at

hand, will be duly highlighted in the text below.

Denote by

I C =e* + r (6.1)

For an isotropic, spheroidal inhomogeneous the eigenstrains E** are related to C"
and far field deviatoric strain c'° by (Mura 1982)

eij = 15(1-[i O (W* P) - eUf/.* ] [(5v- 7)y - (8 - 10v)y*]-
=ij 1 1-v)Lee L(6.2)

where At is the shear modulus. Also, the spherical parts of the strain tensors are

i related by

Ekk = 3(1 -v)[(K-K)ek - K*ekkI [(4 v- 2)K - (I+v)K" (6.3)

whereI
I
I
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I2/

K = + 21 - E) (6.4)
3 3(l -2V)

I is the bulk modulus of the matrix.

In (6.2)

E U " = UiJ dk (6.5)I3
are the deviatoric components of the far-field strains. The moduli Pu and K

without superscripts refer to the matrix.

The expression (6.3) can be further simplified if

I (K* - K)ekk < K*4k (6.6)

The inequality (6.6) will be satisfied if:

- the bulk moduli of the ettringite and the hardened cement paste do notfsignificantly differ from each other, and/or when
- the far-field strain is not the result of mechanical loads but arises from

the accommodation of strains attributable to a dilute concentration of expanding

inhomogeneous inclusions (beam or slab effect).
In absence of data regarding the elastic moduli of the ettringite it is not

possible to estimate how much do they actually differ from those of the hardened

cement paste. However, since the dilute concentration of inhomogeneous
inclusions is actually the one examined within this Report the local strains must

indeed be much larger in magnitude than their averages. Thus, from (6.3) and

(6.6) in conjunction with (4.8) it further follows for a single ettringite inclusion

that

•* , . -3(1-v)K* Ek _ -3(1-v)K* ,i
Ekk (4v- 2)K-(1 +v)K* f (4v- )K- (+v)K* fl (6.7)

where the volume fraction fl of inclusions is a positive number not larger than

unity.
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I
Assuming further, for simplicity, that the elastic moduli of the inhomoge-

neous inclusion (ettringite) and the enveloping matrix (hardened cement paste) are

identical, it is not difficult to deduce that in the absence of the far-field stresses

(from some other source), the strains inside a spherical inclusion are

Er= CO I I +l__.Pa,
3 1 - v e xe e 2 (6.8)

Outside the spherical inclusion of a radius a the strains are

Er =_2+ v (ay er (6.9)

e = 11 + v (are- xe (V - S2) (6.10)

where in view of (4.8)

,r 8j lev 8ij (6.11)I
is the free expansion strain computed from the stoichiometric analyses in the

Chapter 4 of this Report. It is notable that the inclusion expansion can impart

large tensile hoop strains (6. 10) capable of crack nucleation at the inclusion -

matrix interface (r = a )

At this point it is tacitly assumed that the temperatures generated during the

reaction are a second order effect in computations of the inclusion expansion.

* This point may have to be revised subsequently since the measurements indicate

that a rather large thermal energy of 1450J per lkg of the reaction product is

* liberated during a similar reaction taking place during hydration of the cement in

the fresh cement paste (see Mchedlow - Petrosian 1988).

As the solute diffuses through the specimen the chemical reactions and the

attendant crystallization of the ettringite will take place in a large number of

locations surrounding the fluid conducting pores. The exact sizes, shapes and

locations of the expanding inclusions containing ettringite crystals (which can

exert substantial forces on the surrounding hardened cement paste) are generally
not known. Consequently, it is not possible to consider every inclusion and

superimpose the effects of all inclusions in the specimen to compute the average

I
I
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stress and strain fields. Similarly as in the Chapter 5 of this Report this problem3 is typically resolved within the effective continua approximation framework

discussed in great detail in Mura (1982) and Kunin (1983). As was mentioned

before this approach has undeniable merits in the regimes preceding the critical

phenomena but is, in its conventional form, of limited utility thereafter.

Consider, therefore, a volume V containing a dilute concentration of3 spherical inclusions having a total volume of

V1 = f# V (6.12)

The volume of inclusions is obviously proportional to the concentration of

ettringite to the third power
Since the volume average of the stress perturbations (induced by inhomo-3 geneous inclusions) about their average must by definition vanish the far-field

stress must be equal to the average stress. It is then possible to show (Mura3 1982) that the average strain attributable to the expanding inclusions is

S( Ei)) = ft E'** (6.13)

The angular brackets in (6. 13) are used to denote the average (expected) value of
the bracketed variable. Knowing e' from (4.8) and (6.11) it is then possible to

compute from (6.7) e** and from (6.13) the average strain in the material point.3 Combining (6.7) and (6.13) it further follows that the strain due to

expanding inhomogeneous inclusions is directly related to the ettringite3 concentration Ce. The spherical part of the strain tensor (6.13) is then

j( ek ) = 3flce (6.14)

where from (6.7) and (6.13)

-3(1- v)K *
/3=(4v - 2)K - (I + v)K* (.5

For the case of many inclusions the bulk modulus K in (6.7) is that of the

effective continuum (matrix and the embedded inclusions). Unfortunately, neither
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the self-consistent scheme (Budiansky 1965) nor the differential method (Hashin

1988) do not lead to an explicit expression for the effective bulk modulus. For

the present purposes it is, therefore, more convenient to apply either the Voigt' s

(upper bound)

KV = (I -fl) KO + fIK* (6.16)I
or Reuss' (lower bound)

I _- a1f+ (6.17)
IKR KO K*

estimate. In the present case these two estimates should not be too far apart since3 « 1. In (6.16) and (6.17) the indices V and R stand for Voigt and Reuss

estimates.3 The Voigt and Reuss expressions for the shear moduli are identical in form

to ones for the bulk moduli, i.e. (see Mura 1982)

U2V = (1 _)0 + fly* (6.18)

and

I + f*
/2R 0° P2* (6.19)

The elastic modulus and Poisson's ratio can subsequently be computed
from the expressionsI

E = 2(1 + v),u

(6.20)

2(3K + g)

iin either Voigt' s or Reuss' approximation.

I
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1 6.2 Cracks

I The second type of defects consist of cracks of different sizes, shapes and

orientations. For simplicity it will be assumed that the cracks are all planar and3 penny-shaped, but of different orientation. In this case a crack can be modeled as

a oblate spheroid of vanishing thickness. The eigenstrain in such an inclusion is

(Mura 1982, Krajcinovic and Sumarac 1987)

lim (a3, i = b' n3I a3 -+0 (no summation) (6.21)

3 In (6.21) a3 is the vanishing thickness of the oblate spheroid (penny-shaped

crack), n normal to the crack surface and b the displacement discontinuity

across the crack plane. Primes indicate the local (crack) coordinate system

selected in such a manner that the axis 3 is collinear with the normal to the crack

surface.
srcAssuming that the crack during its growth remains in the same plane (i.e.

that its growth is in our case self-similar) the displacement discontinuity can be3 written in form (Hoenig 1978)

I b= [1-(x: / aj]11 2B k 03k a, (6.22)

where a is the crack radius, x,<aj , - while B represents a matrix of influence

coefficients which depend on the elastic parameters of the effective continuum

(i.e. original matrix and the already existing cracks). The original matrix,

naturally, includes the isotropic, but not necessarily homogeneous, distributi-on

of the ettringite inclusions. Also o is the external stress field which is in the

spirit of the self-consistent method assumed to be equal to the macro-stresses O.

Rewriting (6.21) in a symmetric form for the k-th crack

(k) = (nij'+ njbi') (k)  (6.23)
123 Eli( 2 i)(k
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averaging the displacement discontinuity over the crack surface

I A fbi dA (6.24)

3 and introducing the coordinate transformation relating the local (crack) and global

(specimen) coordinate systems

Ib i = gij bj and Uj = gimgjn Cmn (6.25)

I (where the matrix [g] is defined by (5.32)) the eigenstrain can be shown to be of

the following simple form (Krajcinovic and Sumarac 1987, etc.)

I* (/k)=a'bj ,n
e-I =a3b (6.26)

The stress tensor imposed symmetries require

I bijmn = Aijmn + Ilijnm (6.27)

I where

fijmn = B pq(gpi gqn m nj + gpj gqn nm n) (6.28)

The transition to a large number of cracks is performed in the spirit of the
effective continuum models in the manner discussed in the preceding chapter of
this Report. The total strain averaged over the volume of the representative

element V is then (Mura 1982)

I
Vl(E0+e)dV = VS0.:(o0+a)d V+ lj17  ,jsdV (6.29)

where the stresses and strains without superscript indicate perturbations induced

by the cracks. Since the average values of these perturbations vanish, and since
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the far-field stresses and strains (denoted by the superscript '0') are at the same5 time the expected values from (6.29) and (6.26) it further follows that

i0 = [SO+ I(a3/V) l] :O = S:C o  (6.30)

where

S so + J a3V)b - So+(N3b) (6.31)

is the effective compliance. The angular brackets denote again the volume3 averages. Assuming that no correlation exists between the sizes and shapes of the
cracks the effective compliance can be written in a simpler form

IS = S0 +(-bN )(b(0)) (6.32)I
According to (6.32) the compliance depends linearly on the Budiansky-O' Connell
(1976) damage variable already defined by (5.44). The data related to the

ellipticity and orientation of the crack popuiation are stored in the fourth rank
tensor b. As in the preceding chapter in the case of many cracks the sum is
typically converted into an integral taken over the probability density functions
defining the sizes, shapes and orientations of the cracks within the representative3 volume elements

3S = so + b(, A) -!B(Y) dY
y bV(6.33)

I where the normalizing condition is the same as in (5.21)

Y) (6.34)

These integrals can in conjunction with some simplifying assumptions be

I computed in the closed form (Krajcinovic and Fanella 1986, Sumarac and
Krajcinovic 1987, etc). Assuming an isotropic ensemble of penny-shaped cracksI
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I
embedded in an isotropic and homogeneous elastic matrix the effective elastic

moduli can be derived in a closed, but not explicit, form (Budiansky and

O'Connell 1976, Sumarac 1987). Neglecting the influence of the Poisson's ratio1 the elastic modulus in a material point of the effective continuum is

E=E--1-9 6-o) (6.35)

where ao is the damage variable defined by (5.44), while E is the elastic3 modulus of the material with inclusions but without cracks (6.20).

The final expression (6.35) for the elastic modulus is valid for sufficiently

dilute concentrations of inclusions and microcracks (i.e. when their direct

interaction is a second order effect).

I
6.3. Stress-Strain RelationshipI
Combining the influence of the expanding ettringite inclusions and already formed3 cracks the relation between the macro-stresses and macro-strains can be rewritten

as

5o = S:0 +  **  (6.36)

3 The elastic modulus of the undamaged part of the matrix must reflect the influ-

ence of the ettringite inclusions (in Voigt' s approximation)

E 0 = (I - f')Ecp + f' Ee (6.37)

U where the subscripts cp and e refer to the cement paste and ettringite

crystal. Then,

G0 = S- . (Co .f e) (6.38)I
For the considered isotropic (one-dimensional) case the expression (6.38) ac-

quires a simple form
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i
9 ~I6 a (o1 e (6.39)

where the coefficient P3 is obtained combining the expressions (4. 10)1 and (6.15).

The further analyses follow the conventional routes. The macrostrains must

satisfy the equations of compatibility and requisite boundary conditions.

Additionally, the macrostresses must satisfy the equilibrium equations and

boundary conditions on stresses as required by the considered problem.

6.4. Damage evolution law.

The final step in establishing the mechanical constitutive theory is to formulate a

kinetic law relating the evoluion of the damage variable cu as a function of the

other thermodynamic variables. Assuming that the cracking will occur in the

exterior of the expanding inclusion it seems reasonable to expect that the cracks

will grow out in the direction of the radius of the expanding ettringite crystal

(assuming it to be spherical in shape).

For a two-dimensional crack-hole system shown in Fig. 1 an approximate

formula for the stress intensity factor reads (Murakami 1987, p.264)

K - 2p R F0((
i7 r(R+a) R (6.40)

where R is the pore radius, a the crack length, p the pressure within the hole.

In (6.40) FO(R) denotes a correction factor. For (a/R)> 2 it follows that F0 = 1

and the stress intensity factor takes a simple form

KI - 2pR (6.41)

f7 r(R +aj

For a constant radius R0 from the equilibrium in the sense of Griffith

a = 2 p2R0g R0,rEo r (6.42)
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where I is the fracture (surface) energy of the hardened cement paste. Assuming

3 that the fracture energy is not modified (reduced) by the adsorption process (Rice

1978) the expression (6.42) suffices for the determination of the crack length a as

a function of known quantities.

Il w
#RO

I, 4sQ3P
+a

Fig. 1. Cracking due to expansion of an ettringite crystal.

A conventional analysis proves that

a > 0 (unstable) for a<R0 (6.43)1d a

aG < 0 (stable) for a >R 0  (6.43)2
a

In other words, the crack length vs pressure relation is discontinuous a shown in

Fig. 2. A very small notch at the perimeter of the crystal will at one point become

unstable and grow in a single spurt until it acquires the length a = R0. After that

the crack will increase its length with the added pressure in a monotonic and

stable manner.
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a

R0 •.

a

PO Pf

Fig.2. Stability of crack growth

Since the pressure p within the pore is directly proportional to the
volumetric expansion from (6.42) it follows that the crack length a is proportional
to the square of the ettringite concentration ce. Consequently, using (4. 10) and
(6.7) the damage parameter (5.44) is

(0 = gc6  (6.44)

where

E 3[3R 0 Tp . 16
g = --y[fJ 1- 2v (2-4v)+(1 + vfK*/K)J (6.45)

In (6.45) N denotes the number of cracks in the reference volume V, v, E and K

are the Poissons' ratio, the Young's modulus and the bulk modulus of the
matrix,respectively; y is the surface energy of the matrix. Superscript '*' refers

to the ettringite.

It is quite apparent that a very precise and rigorous determination of all in-
volved parameters entering above expressions is possible only in a statistical
sense.Taking into the consideration that the inclusions are not spherical in shape
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and that their size is not deterministic in nature it is, at this stage, not possible to

be more explicit then to rewrite the expression (6.39) in the form

00 = E(I-g 2cP)(e 0 - Pce) = E(eO - P ce) (6.46)

where g2 and P are parameters to be determined from the expressions (6.35),

(6.45), and (6.15). The expressions derived in this Report should provide guide

and bounds for the determination of these parameters.

7. APPLICATION

The ultimate test of any analytical model is in its ability to replicate

experimentally measured data and predict the response of a specimen or a

structure. This task is in the present case hindered by: a less than precise

documentation of the published test results, unfinished state of te model and the

physical reality (i.e. essentially random nature of the phenomenon). The

published test results generally lack precise data related to microstructural

parameters (diffusivity, porosity, microcrack density, etc.) and are rather vague

in defining what is actually considered to be the volumetric strain.

The best set of data related to the expansion of mortar specimens exposed

to a combined external attack of MgSO 4 and Na 2SO4 has been provided recently

by Ouyang, et al. (1988) who performed their experiments in concert with the

ASTM C1012 recommendations. Mortar specimens are used in such tests to

accelerate the process of evaluating the potential expansion of the concrete

elements in sulphate solutions (Price and Peterson 1968).

It is commonly observed that in the external sulphate attack the matrix

cracking due to ettringite crystallization accelerates further penetration of new

sulphate ions which, in turn, intensifies the pace at which the expansive ettrin-

gite is formed. The rate of the expansion is, thus, an increasing function of time,

as demonstrated in Lea (1970, p.352, Fig. 102) and Ouyang, et al. (1988, Fig. 1).

Conversely, in the case of internal sulphate attack the amount of sulphate ions

that reside within the mortar decreases as the double decomposition reaction (4. 1-

2) proceeds. Consequently, the linear expansion versus time curves would exhibit
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a decreasing slope, as reported by Ouyang et al.(1988). It should be mentioned
here that the above observations refer to mortars and concretes made of ordinary

portland cements. If, for example, silicate cements were used the expansion
curves in the external sulphate attack would revealed a monotonically decreasing

slope (Thorvaldson, et al. 1932, Lea 1970)
Consider the ASTM C490 test specimen used in the measurements of the

length change, as shown in Fig.3a. Twenty four hours after casting the test bars
are demolded, then cured in water while the companion mortar cubes are being
tested for the compressive strength. If the required strength (20 MPa) has been
attained the bars are placed in a mixed solution of 0. 176 mol/L MgSO4 and 0. 176

mol/L Na2SO 4.

I ,C, Ce

2.5 cm 11

I ,
II

U gage stud 2w0

Fig. 3 (a) ASTM recommended test specimen for measurements of the

length change

(b) cross section of the specimen

The mix proportions of mortar and the content of tricalcium aluminate are
usually given as the mass percentages with respect to cement. Therefore, it is

necessary to convert the molar concentrations of sulphates to the mass
percentages as well. Since the analysis is confined to the topochemical reaction
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(4.2) the mass M of V= 1 M3 of mortar has been selected as the reference1 . The

3 mix proportions of the mortar used in Ouyang, et al. (1988) are

Mcm : Msa : Mw = 1 : 4 : 0.6 (7.1)

where the subscripts cm, sa, w denote cement, sand, and water, respectively.

Assuming the average values for the densities cm = 3150 kg/m3,

ysa=2650kg/m3 (Powers 1968) the amounts of the the constituent substances can

3 be computed from the relation

Mcm+ Msa + Mw = lm 3  
(7.2)Icm 7sa

3 neglecting the air content.

In the considered case the masses calculated from (7.2) are

Mcm = 412kg Msa = 1648kg M, = 247 kg ; M = 2307 kg (7.3)

I In order to determine the -initial concentration of C3A available for the
reaction with the aggressive ions diffusing through the test specimen it is first3 necessary to estimate how much of the C3A anhydride remains in the cement after

the hydration. Assuming that the amount of gypsum added to portland cement3 clinker is 4% of Mcm (Biczok 1972 p.46) a true initial concentration of tricalcium

aluminate is

a a -a0.04 Ma (7.4)

where: fa-- (4.3%, 7%, 8.8%, 12% ) is the C3 A content in the cement as given in

Ouyang, et al. (1988); ma and mg are, as before, the molar masses of tricalcium

aluminate and gypsum. The factor (mal 3 mg) results from the stoichiometry of

the reaction (4.2).

1 From now on the term concentration is to be understood as the mass percentage unless stated otherwise
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The next step consists of computing the initial concentrations of sulphates3 with respect to the total mass M. The number of moles of both MgSO4 7H20 and

Na2SO4 in the saturated solution occupying the accessible pores is

3 nsl = ns2 = ns= V. 0.176 (mol / L) (7.5)

3 where the subscripts sl and S2 stand for MgSO4.7 H2 0 and Na2SO4 respectively;

V= 1 m3, while 0 is, as before, the accessible porosity.3 "The total mass of sulphates in the considered volume becomes

Ms = Ms1 + Ms2 = n (msi + ms2) (7.6)

where ms, and ms2 are the corresponding molar masses.
Taking in absence of exact data 0 = 0.4 as an average value for mortars

and making use of (7.5) and (7.6) the initial concentration of sulphates is

co= Ms = 0.012 (7.7)
M

A tacit assumption on which the above analysis rests is that the action of

magnesium sulphate and sodium sulphate on mortar is similar in the sense that
both substances serve as sources for the aggressive ions SO 2. In practice, the3 magnesium sulphate often turns to be more dangerous because it additionally
attacks and decomposes hydrated calcium silicates (e.g. Lea 1970). On the other3 hand, it has been reported that a sodium sulphate solution is more corrosive than

a magnesium sulphate solution if the calculated content of C3A in the cement
exceeds 9% (Biczok 1972 p.50). In the light of these information the assumption

of an equal average influence of both substances on concrete corrosion seems
justified.

Having computed the initial concentrations of reactants it is now possible
to rewrite the rate equation for the ettringite formation (4. 12)I

dc = k (ac - Lmg-)c,)(Ia- c,) (7.8)Idt me Me.
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where ce stands for the actual concentration of ettringite, ac is the initial3 concentration of the adsorbed gypsum, a the adsorption constant, and c the actual
concentration of sulphates.

A rigorous analysis of the double decomposition chemical reaction (4.1-2)

would require one kinetic equation for every substance entering the reaction.
Expression (7.8), and in particular the assumption that the concentration of3 adsorbed gypsum and the sulphate are linearly proportional, is an attempt to

simplify the analysis.3 The experimental measurements of the rate constant k , for the observed
chemical process, could not be found in the consulted literature. Thus, it becomes
essential to devise means for a rational estimate of k based on available
observations. For example, it seems reasonable to assume that the rate at which
the considered reaction develops is similar to the rate at which the same reaction3 proceeds when the water is added to sand and cement during the mixing of
mortar. For the latter case the rate equation isI

9=k ( cO -c9) fa- M Cg; (7.9)& 3mg 7

Knowing the initial concentrations of gypsum added to the clinker co  and the

tricalcium aluminate fa it is then possible to estimate the rate constant requiring
that gypsum be consumed after a certain time t. Solving the equation (7.9) for k
we get

ma -lnC°O[fa -(ma/,3mg) cg]}
k fa - f-o.. c0 ) n { fa(CO - cg) (7.10)

Assuming, for illustration, that 50% of co will be used up after t = 24 h , the

rate constant is computed from (7. 10) to be k = 2.4.10-4 s -1. Naturally, since k =
k(pressure,T) the above estimate is based on the assumption that the temperature
liberated by both reactions is identical and that k is not very sensitive to
pressures (which are much higher during the formation of the ettringite in the
hardened cement paste).

Finally it is advantageous to express (7.8) in a nondimensional form as

follows
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3 de- = (a - 0.412 e)(fa - 0.2153e) (7.11)
di

I where:

I_
=e F =_t k=kTco a (7.12)

Co Co T Co

with co given by (7.7), T = 24 h, and fa defined by (7.4).3 Consideration of the diffusion equation (5.15) in the actual three
dimensional specimen requires costly and time consuming finite element
computations. Even though these analyses may indeed become necessary at the

later stages of the model development at this point they can hardly be justified. In
order to assess the ability of the model to replicate the experimental trends it
seems sufficient to consider the plane bisecting the specimen in Fig. 3b in halves
and assume the diffusion to be one-dimensional (across the thickness only). In3 this case the diffusion equation (5.15) reduces to a much more manageable form

of

Iac = a DO I+gic ac]1t x + T) (7.13)

I
where: o is the damage variable (5.44).3 The initial and boundary conditions are

C (x,0) =0; C (-wo,t) = C (wo,t) = CO (7.14)

and additionally from symmetryI
Xj- o,t) = 0 (7.15)
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which assures a smooth curvature of the concentration profile near the x-axis. In

(7.14) wo is the half-width of the specimen cross section. Making use of the

relation (6.44) the (7.13) becomes
a- [ DO ,C6 c

[t x I Te6j](7.16)

The ettringite concentration ce is determined from the rate equation (7.8). The

governing equations (7.8) and (7.16) are highly nonlinear and coupled rendering

the analytical or even approximate solutions not possible at this time. From the

numerical standpoint the analysis of the problem is further complicated by the fact

that the system of rate equations (7.8) is quite stiff, to the point that even the

Gear's method (commonly used in this class of problems) is not effective. At the

present stage it seemed reasonable to use a somewhat less rigorous (partially

uncoupled) approach. Assume at the very first time step that the diffusivity D is

not affected by the microcracking (co = 0 =; D = DO). Thus, the solution of the

diffusion equation (7.16) can be expressed in the form of an infin~te series

(Carslaw and Jaeger, 1959)

3,t= 1 os4 c (7.17)
X nr ,x[Al0(2n + 1 (7.17

where, consistent with (7.12), the following normalization was introduced

C ==x =X = o DOT (7.18)
Co wo T Wo

Computing the sulphate concentration from (7. 17) it becomes now possible to3 solve the rate equation (7.11) for the ettringite concentration e- In the next time

step this value is inserted into the expression for diffusivity 5 - 130(1 + g1lco), a

new value of is found from (7. 17), and the process repeated. If the time step is

kept small this procedure is found to lead to a reasonable solution. The numerical
code using the IMSL (1987) routines for the solution of a system of 21 coupled

nonlinear ordinary differential equations (7.11) at the discretization points is
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listed in the Appendix B. The CPU time consumed at one run of the program on

IBM-3090/XA was about 3 minutes.

The existing experimental data are limited to measurements of the axial (or

volumetric) strains averaged over the entire length of the specimen. Thus, the

estimate of the accuracy of the analytical model are restricted to the comparisons

of the computed and measured average strains.3In the absence of the externally applied tractions the average stresses in the

cross section must vanish!
J c(x, t)dx = 0 (7.19)

3Introducing further the classical Euler-Bernoulli's hypothesis of plane cross

sections the overall strain can be computed from (6.46) in conjuction with (7. 19)

E = rceo(Xt[ 1 (C6] 46

o [1-g 2 (coe)6]d 
(7.20)

where the normalized variables (7.12) and (7.18) have been used.
With the gradual increase in the microcrack density the elastic modulus

(6.35) or (6.46) decreases. At one point the elastic modulus might vanish, i.e.Ithe material becomes so heavily damaged that it looses its load carrying capacity.

Consistent with the assumption that the local stresses around expanding3inclusions are dominant (i.e. much larger than the stresses associated with the

beam like behavior) the zone in which the load-carrying capacity is lost is

contiguous with the external surface (Fig.4).

This type of behavior is often modeled introducing a fracture (or

percolation) front, Fig.4 (cf. Kachanov 1986), separating the heavily damaged

zone from the material which can still carry the loads. In fact such a behavior
(spalling) is commonly observed in the structural elements exposed to aggressive

waters (e.g. Biczok, 1972). The formulation of a proper criterion of the

percolation front propagation is a complicated task considered to be beyond theI
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!
scope of this study. For the present purposes the position of the front will be

identified with the plane in which the elastic modulus reaches the zero value.
From (6.46) the position of the fracture front is

E = E[1-g(cr)6] = 0 (7.21)

where cg is the corresponding critical concentration of ettringite.

II

Io "

- 'I I "1-"

I '.

Fig. 4. Moving fracture (percolation) front.

I Naturally it is well known that the criterion E = 0, or wcr = 9/16, is but a

sign that the accuracy of the self-consistent model deteriorates for o=0.5 (see

Hashin 1983). More sophisticated analyses (Kunin 1982, Christensen and Lo
1979, Hashin 1988 ) indicate that E does not vanish at co = 9/16 as indicated by

the Budiansky-O'Connell (1976) analyses. However, the statistical studies of

Hansen, et al.(1989) demonstrate that the failure does occur at o=0.5 (at least

for the two-dimensional lattice they considered). In other words, their results
confirm that the crack interaction, and thus, stress redistribution in the pre-
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critical domain are not crucial for the determination of the critical point. Whether

this is actually true for a three-dimensional case cannot be assessed without a

serious study of the corresponding percolation process. At this point, in view of

other uncertainties and the limited objective of this Report it seems reasonable to

I adopt the simplest alternative and argue that the criterion (7.21) approximates the

reality with a satisfactory accuracy. The post-critical behavior will be reduced to

claiming that the stress in the volume swept by the front kJ > w vanishes. In this

manner the thickness of the narrow zone in which the concrete 'softens' before

the stress actually vanishes is shrunk to zero.

In view of the condition (7.21) the formula (7.20) ceased to be valid when

the percolation fronts are generated. At this point (7.20) should be replaced by an

approximate expression as follows

W cr W JW )()

w0) e WO jE(x~t)dt (7.22)

where () stands for the average value. In (7.22) /3 is the expansion coefficient,

while w and wo are specified in Fig.4.

Results of the performed computations are sum~marized in Figs 5 to 16. The

following numerical values were assumed for the material parameters involved in

the model: DO = 10-8 cm 2 /s (cf. Biczok 1972 p.141), co = 0.012 (see 7.7),

k =2.9-10"5s1 (7.10), a =0.8, 3=0.1 (4. 101 and 6.15), fa =(4.3%, 8.8%, 12%), v =

0.2, K*/K=0.75. The two fitting constants were assumed to be gj = 0.5.1012,

g2 = 0.7.10 1 1.
The concentration of sulphates across the thickness of the specimen is

plotted in Figs 5 and 6. For small volume fractions of C3 A (or short times) the

sulphate concentration c is equal to co only at the external surface of the
specimen (x/wo = 1). However, if the mortar spalls off near the surface the
heavily damaged volume of the mortar immediately saturates as shown in Fig.6.

Similar situation, Figs 7 and 8, occurs with the concentration of ettringite

obtained solving the equations of the kinetics of the chemical reaction (7.11). The

main difference between two figures is in the chemical composition of the mortar
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(i.e. mass of C3 A ). The horizontal part of the ettringite concentration curve in

Fig.8 corresponds to the fractured zone in the specimen.

The change of diffusivity, depicted in Fig.9, also shows the expected

patterns. The two-fold increase of the diffusivity at the external surface (for the

4.3% C3 A content) is of the same order of magnitude as measured for a
reinforced concrete beam by Bazant, et al.(1987). For this case of a 'sulphate

resistant' composition the change of diffusivity is restricted to the vicinity of the

external surface.

The reduction of the elastic modulus, shown in Figs 10 and 11, develops

along the expected lines. The drop of -20% for the mortar with 12% C3 A is in a

good agreement with the experimental data from Ouyang, et al. (1988, Fig.3).

Naturally, consistent with the adopted model the elastic modulus reduces to zer.
in the part of the volume swept by the percolation front (Fig. 11). In the case of

the suiphate resistant mortar, Fig. 10, the damage, i.e. drop in elastic modulus is

again confined to the vicinity of the external surfaces.
The stress distribution across the specimen thickness is plotted in Figs 12

and 13. For the specimen with a safe mass fraction of C3 A (Fig. 12) large

compressive stresses occur near the external surface while the middle part of the

specimen is subjected t- smaller tensile stresses. As soon as fracture (spalling)
occurs the stresses drop to zero and the compressed zone shifts inward (Fig. 13).
The computed values for macro-stresses indicate that the compressive macro-

stresses are still below the levels at which they will influence the local stresses
around the expanding inclusions. However, the tensile stresses in the middle

portion of the specimen might indeed facilitate cracking and accelerate the failure.
This aspect of the problem will be considered in the following stages of the

program.
The propagation of the fracture (percolation) front for the case of a test bar

with 12% of C3A is plotted vs time in Fig. 14. In absence of experimental data

this curve, while intuitively acceptable, cannot be confirmed in a quantitative

sense. It is notable that the proposed model will, indeed, allow for the
determination of the safe duration of the sulphate attack. In the considered case

the exposures less than 60 days will not cause any spal iig. Therefore, once

thoroughly tested, this model may indeed prove to be a powerful design tool.
Naturally, the model itself must be improved by introduction of a more realistic

criterion for the onset of critical phenomena (percolation or spalling).

I
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Fig. 15 represents the actual objective of this program, i.e. it tests the
ability of the model in relating the macro-structural, phenomenological

observation (macro-strain or expansion) and the chemical composition of the
mortar. The curve for the lowest concentration of tricalcium aluminate (4.3%) is

duplicated with a remarkable accuracy. For the mortars with a larger content of

C3 Athe trends are qualitatively duplicated but the fit, as expected, is somewhat
less impressive. This is, naturally, the result of the fact that the spalling which

occurs in these cases was not adequately modeled by the present theory. A less
than rigorous selection of the mortar failure criterion ( E = 0, i.e. w=9/16) (7.21)
and the attendant uncertainties with regard to the post-critical (softening)
response of the mortar resulted in a quantitative discrepancies with respect to the

measured data. This error is further compounded by the fact that a fluid path
through a system of connected cracks (percolation threshold) will, in general,
occur well ahead of the onset of fragmentation (Jaeger, private communication
1990). Thus, the transport of sulphates will occur in a mode combining diffusion
(through the very thin pores) and percolation. As a result the expansion will be
accelerated establishing a closer fit between the experimental and analytical data.

In conclusion, the data plotted in Fig. 15 demonstrate a remarkable ability

of an as yet incomplete model in replicating the trends in a qualitative way, and
provide a promise that a better than expected quantitative fit can be obtained once

the model is completed.

In a chemical sense the reactions (4.1-2) in a mortar poor in tricalcium
aluminate consume all of it without being able to generate enough expansion to
endanger the integrity of the mortar. Once the C3A is totally consumed the
ettringite crystals will cease to expand and multiply and the mortar will remain

immune to further exposure to sulphates (its strength will be somewhat reduced
by the ettringite inclusions, see expressions (6.14) and (6.15)).

The graphs in Fig. 16 depict the increase in the ettringite concentration with
time for mortars with three different C3 A contents. It can be seen that the
response of mortars rich with C3 A was dominated by the supply of gypsum (first

parenthesis in 7.11). Thus, in the case of continued supply of gypsum the

expansion can be continued until the specimen fractures. In contrast the response

of mortar with 4.3% of C3 A is limited by the available tricalcium aluminate

(second parenthesis in 7.11). At one point, somewhat in excess of the considered

duration of 60 months, the curve approaches a horizontal asymptote and the
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specimen becomes impervious to further sulphate attack (see Mather 1968,

Fig. 3).

The present computations were, for the discussed reasons, discontinued

beyond e > 0.15% since the lack of information regarding the behavior of mortar

in the post peak region (which occupies the ever increasing part of the specimen
volume) makes these computations incorrect. At the current state of development

it was considered sufficient to demonstrate the trends of the response. Only the

analyses in the case when the softening material occupies only a small part of
volume can be considered rigorous. For the case when the softening material

occupies a large part of the volume the present model offers only an approximate

solution.

It should be emphasized again that the model in its present form contains
two fitting parameters g2 and g, .In fact they could be determined from (6.44) if3 the. involved micromechanical constants are known.

The value P=O.1 for the coefficient of linear expansion used in the

Scomputations was obtained assuming (in absence of the experimental data) the
ratio of the bulk moduli of the ettringite and mortar to be equal to 0.75. This

corresponds to the ratio of the densities of two materials. It was also accounted

for the fact that in the analyzed case the solution contains both magnesium and

sodium sulphates in equimolar concentrations. The value for the rate constant k
used in the computations was lower than the simplified estimate discussed on the
page 48. To this end one has to bear in mind that the time needed for the first of
the double-decomposition reaction (4.1-2) to complete has been neglected, while

the actual form of the rate law for the second reaction was uncertain as well.
However, the general structure of the model allows for the incorporation of any

modification once convincing and specific experimental data become available.

I
8. SUMMARY AND CONCLUSIONS

Despite the fact that the theory is at this point not complete it, nevertheless,

strongly indicates the inherent power of microstructural modeling. The major
advantage of this type of modeling is in its ability to relate the chemical

composition and microstructure (porosity, diffusivity, etc.) of the cementitious

I
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composite to its performance under all conditions. This becomes abundantly clear
in the case of the investigations described and summarized in this Report.

As shown in Fig. 15 the model clearly distinguishes between the case of

small concentration of tricalcium aluminate (which is sulphate resistant if less

than 5.5%, Ouyang, et al. 1988) and the mortars rich in C3 A which disintegrate
when subjected to water-borne sulphate for a prolonged time period. Naturally,

similar analyses can be readily performed for an entire class of related problems

such as processes driven by pressure gradients (flow through the porous media),
alcali-aggregate reactions, cation-exchange reactions, hydrolysis of the cement

paste, formation of insoluble and nonexpansive calcium salts, carbonic acid
attack, frost action, etc.. The apparent ease with which the model succeeds in

replicating the results of a complex physico-chemical process gives rise to

considerable confidence in its utility and versality, and presents a strong impetus

for its future development.
As it was duly noted in numerous places in this Report the model is by no

means completed. A serious effort must be made to clarify a number of

contentious arguments and remove some of the uncertainties. For example:
The computations leading to results plotted in Fig. 15 are, rigorously

speaking, correct only for the curve with the lowest concentration of tricalcium

aluminate. Even though some justification for the selection of the fragmentation

(fracture) criterion (o = 9 /16) is available a much more detailed and rigorous
study of the critical phenomena and response of the mortar in the post-critical
(post-peak or softening) regime must be undertaken in order to gain full

confidence in the model.

The computation of diffusivity without considering the formation of a
direct path through a system of connected microcracks (which can happen at
rather low microcrack densities and much before fragmentation) seriously

underestimates the rate at which the process develops at the later stages of the
deformation. This is quite obvious from the Fig. 15 for the two mortars with
higher concentration of tricalcium aluminate. Even though the trends of

experimental data are well replicated the model underestimates the expansion by

neglecting the percolation.
In conclusion, the proposed model formulated in the course of this AFOSR

sponsored research program, shows undeniable promise and ability to deal with a

complex and hitherto not well understood process. The elements of the proposed
model are firmly based on the chemistry and physics of the process, as well as
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the properties of the cementitious composite and its micro-structure. Once fully

developed and tested, this model should contribute to the formulation of a potent

tool for the optimization of the chemical composition of concrete in view of its

purpose and the ambient to which the structure will be exposed. However, in

order to reach this stage additional basic analytical and experimental effort cannot

be avoided.

I
I
I

I
I
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3 APPENDIX A

I substance subscript molar mass molar volume density
(g/mol) (cm3/mol) (g/cm 3)

Ca(OH)2 c 74.0 33.2 2.23

3 MgSO4 s 120.4 72.1 1.67

CaSO42H20 g 180 18.0 1.00

1 H20 - 172.2 74.1 2.32

Mg(OH)2 58.3 24.5 2.38

3 3CaOA120 3  a 270.2 88.8 3.04

3CaO.A12O3.3CaSO 4 32H 20 e 1254.5 725.1 1.73

T
Table A. 1. Molar masses and molar volumes of reacting substancesI

I
I
I
I



APPENDIX B 77

I
I"

* PROGRAM TO SOLVE A PARTIALLY UNCOUPLED SYSTEM OF THE NONLINEAR
DIFFUSION EQUATION (7.16) AND THE RATE EQUATION (7.11) FOR THE

* ETTRINGITE FORMATION, USING THE IMSL ROUTINE (DIVPAG).
' SINCE THE PROBLEM IS STIFF THE GEAR'S BACKWARD METHOD IS ADOPTED

II

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (NEQ=21, NPARAM=50, -NSTEP=50, LDA=NEQ)
DIMENSION A(LDANEQ), CE(NEQ), PARAM(NPARAM),YM(NEQ),SIGMA(NEQ)
EXTERNAL FCN, FCNJ. DIVPAG, DSET, CONST
COMMON/PASSE/TEND,XX(NEQ),CC(NEQ),DD(NEQ)

I *t***** INITIALIZE PARAM - DIVPAG

HINIT = 2.0
INORM = 1
METH = 2
MXSTEP = 2000.
CALL DSET (NPARAM, 0.ODO, PARAM, 1)
PARAM(1) = HINIT
PARAM(4)= MXSTEP
PARAM(10)= INORM
PARAM(12) = METH

****INITIALIZE OTHER ARGUMENTS AND INTRODUCE CONSTANTS -

U CALL DSET(NEQ, 0.0, CE, 1)
CALL DSET(NEQ,O.O,SIGMA,1)
CALL DSET(NEQ,0.0,YM,1)
C =1.0
WO = 1.25

W = WO
CO = 0.012
DO = 1.OD-8

***** 'SRR' IS THE NORMALIZED RATE CONSTANT K' K'

SRR =0.03
GI = O.5D12
G2 = 0.7DII
CECR = 1.0I(G2I(1.0/6.0))/CO
CCR = 1.0

Itt 'AL' IS THE ADSORPTION CONSTANT 'ALFA' *
TA' IS DETERMINED BY (7.4) AND (7.12) *

I
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3 AL -0.8
FA - 0.3
Pi - CONSTCPI')
DELTA=1.0/FLOAT(NEQ-1)
BETA = 0.1IN TA E TR

IDO = 1

****** T IS TIME, TOL - TOLERANCE FOR ERROR CONTROL S*

T = 0.0
TOL = O.lD-3
TMAX = 300.0
DO 10 K=1, NSTEP3 TEND = TMAX*FLOAT(K)/FLOA(N STEP)

*** INTRODUCE CARSLAW-JAEGER'S SOLUTION (7.17) **

3 DZ = DO*2.4.*3600.0/(W**2)
DO 20 N=1,NEQ
S =0.0

X =1.0-(N-1)*DELTA

XX(N)--X

****COMPUTE THE DIFFUSIVITY

D = DZ*(1.OGl(C*CE(N))**6)
DD(N)--D
DO 30 3=0,500U R = FLOAT(J)
Fl --((-1)*EJ)/(2.oR+1.)*COS(PI*X*(2.o*R+1.o)/2.o)
F2 =EXP(-1.0*D*PI-~2/4.0*(2.0*R+1.0)**2*TEND)

S S+F1*F2
30 CONTINUE

C = 1.0 - (4.o/PI)*s
CC(N)=-C

20 CONTINUE

**** INTEGRATE 21 ODE (7.11) USING IMSL

CALL DIVPAG (11)0, NEQ, FCN, FCNJ, A. T, TEND, TOL, PARAM, CE1)

WRITE(8,23) TEND,T
23 FoRmAT(1x,TrimE = ',F7.1,2XF7.1)

WRITE(8 ,*)'**ss*******s*****'
WRITE(8,77)I77 FORMAT(3X,'X',5X,'C,6X,'CE',7X,D',7X;W,6X,Y',XSIGMA,5X,.

&S5X,EXl)



79

SCHECK IF THE FRACTURE FRONT APPEARED *n

DO 66 N=1,NEQ
IF (CE(N).LT.CECR) THEN
CONTINUE
ELSE IF (CE-(N+1).LT.CECR) THEN
CE(N) = CECR
CE(N+ 1) = CECR
CC(N) = OCR
CC(N+1) = CCR

NCR=N
GOTO 15
ELSE
CE(N) - CECR
CC(N) = CCR
ENDIF

66 CONTINUE

****** COMPUTE EXPANSION (7.20) OR (7.22) USING SIMPSON'S RULE

15 El = 0.0
E2 = 0.0IE3 = 0.0
E4 = 0.0
DO 11 N=2,NEQ-1,2
El = El + CE(N)*(l.o-G2*(CO*CE:(N))3-6)
E3 = E3 + l.O-G2*(C0$CE(N))**6

11 CONTINUE
DO 12 N=3,NEQ-2,2I E2 =E2 + CE(N)*(l.0-G2*(CO*CE,(N))**6)
E4 = E4 + 1.0-G2*(CO*CE(N))**6

12 CONTINUE
SMi --CE(i)*( 1.0-G2*(C0*CE(l1))*-6)+4.0*Fl.+2.0*E2+

&CE(21)*( l.o-G2*(CO*CEC21 ))-6)
SM2 = 1 .0-G2*(C0SCE( i))**6+4.o*E3+2.0*E4+

& l.0-G2*(C0*CE(2l ))-6

EX = BETA*CO*(( 1.0-.W/WO)*CECR+W/WO*SM1/SM2)

****** COMPUTE THE YOUNG'S MODULUS AND AXIAL STRESS****

DO 100 N=1,NEQ
YM(N) = 1.0-G2(CE(N)*CO)**6I 100SIGMA(N) = YM(N)*CO*BETA(SMI/SM2 - CE(N))

10CONTINUE

DO 21 N=1,NEQI WRITE( 8,22) XX(N),CC(N),CE(N),DD(N),W,YM(N),SIGMA(N),EX
22 FORMAT( 1XF4.2,6(FS .5,1 X),F9.6)
21 CONTINUE
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I
**** COMPUTE THE WIDTH REDUCTION ***

3 W= W-NCR*W/FLOAT(NEQ-1)
10 CONTINUE

ID = *3 RELEASE THE WORKSPACE **"U IDO = 3
CALL DIVPAG (IDO, NEQ, FCN, FCNJ, A, T, TEND, TOL, PARAM, CE(1))

* END

*SUBROUTINE TO EVALUATE THE RIGHT-HAND SIDE OF (7.11) s*****

SUBROUTINE FCN (NEQ, T, CE, CEDER)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER(MEQ=21)
DIMENSION CE(MEQ), CEDER(MEQ)
COMMON/PASSE/TEND,XX(MEQ),CC(MEQ),DD(MEQ)
SRR = 0.03
AL 0.8
FA 0.3
DO 20 I=1,MEQ
CEDER(I)= SRR*(AL*CC(I)-0.412*CE(I))*(FA-0.215*CE(I))

20 CONTINUE
RETURN

END

SUBROUTINE TO COMPUTE THE JACOBIAN -

SUBROUTINE FCNJ(NEQ, T, CE, DCDDC)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
INTEGER NEQ

THIS SUBROUTINE IS NEVER CALLED ; INCLUDED BECAUSE THE

RETURN CALLING SEQUENCE OF DIVPAG REQUIRES IT.

I

I
I


